3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем заключается метод скользящей средней

Разработка прогноза с помощью метода скользящей средней. Пример решения задачи

Экстраполяция — это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Метод скользящих средних является одним из широко известных методов сглаживания временных рядов. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов.

Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного интервала времени (периода).

Затем период сдвигается на одно наблюдение, и расчет средней повторяется. При этом периоды определения средней берутся все время одинаковыми. Таким образом, в каждом рассматриваемом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.

При сглаживании временного ряда скользящими средними в расчетах участвуют все уровни ряда. Чем шире интервал сглаживания, тем более плавным получается тренд. Сглаженный ряд короче первоначального на (n–1) наблюдений, где n – величина интервала сглаживания.

При больших значениях n колеблемость сглаженного ряда значительно снижается. Одновременно заметно сокращается количество наблюдений, что создает трудности.

Выбор интервала сглаживания зависит от целей исследования. При этом следует руководствоваться тем, в какой период времени происходит действие, а следовательно, и устранение влияния случайных факторов.

Данный метод используется при краткосрочном прогнозировании. Его рабочая формула:

где t + 1 – прогнозный период; t – период, предшествующий прогнозному периоду (год, месяц и т.д.); Уt+1 – прогнозируемый показатель; mt-1 – скользящая средняя за два периода до прогнозного; n – число уровней, входящих в интервал сглаживания; Уt – фактическое значение исследуемого явления за предшествующий период; Уt-1 – фактическое значение исследуемого явления за два периода, предшествующих прогнозному.

Пример применения метода скользящей средней для разработки прогноза

Задача. Имеются данные, характеризующие уровень безработицы в регионе, %

Метод скользящего среднего

Среднее скользящее значение относится к категории аналитических инструментов, которые, как принято говорить, «следуют за тенденцией». Его назначение состоит в том, чтобы позволить определить время начала новой тенденции, а также предупредить о ее завершении или повороте. Методы скользящего среднего предназначены для отслеживания тенденций непосредственно в процессе их развития, их можно рассматривать как искривленные линии тренда. Однако методы скользящего среднего не предназначены для прогнозирования движений на рынке в том смысле, в котором это позволяет делать графический анализ, поскольку они всегда следуют за динамикой рынка, а не опережают ее. Иначе говоря, эти показатели, например, не прогнозируют динамику цен, а только реагируют на нее. Они всегда следуют за движениями цен на рынке и сигнализируют о начале новой тенденции, но только после того, как она появилась.

Читать еще:  Какие самые дорогие 10 рублевые монеты

Построение скользящего среднего представляет собой специальный метод сглаживания показателей. Действительно, при усреднении ценовых показателей их кривая заметно сглаживается и наблюдать тенденцию развития рынка становится намного проще. Однако уже по самой своей природе скользящее среднее как бы отстает от динамики рынка. Краткосрочное скользящее среднее точнее передает движение цен, чем более продолжительное, т.е. вычисленное для более длинного интервала. Применение краткосрочного скользящего среднего позволяет сократить отставание во времени, однако полностью устранить его при использовании любого метода скользящих средних невозможно.

Простое скользящее среднее, определяемое как среднее арифметическое значение, вычисляется по следующей формуле, при условии что m — нечетное число:

(11.3)

где у, — фактическое значение /-го уровня; m — число уровней, входящих в интервал сглаживания — текущий уровень ряда динамики; i — порядковый номер уровня в интервале сглаживания; р — при нечетном m имеет значение р = (m — 1)/2.

Интервал сглаживания, т.е. число входящих в него уровней m, определяют по следующим правилам. Когда необходимо сгладить незначительные, беспорядочные колебания, интервал сглаживания берут большим, если же требуется сохранить более незначительные колебания и освободиться лишь от периодически повторяющихся выбросов — интервал сглаживания обычно уменьшают.

Метод простого скользящего среднего используется обычно в тех случаях, когда график временного ряда представляет собой прямую линию, поскольку при этом динамика исследуемого явления не искажается.

В том случае, когда тренд ряда имеет явно нелинейный характер и желательно сохранить незначительные колебания в динамике значений, этот метод не используется, так как его применение может привести к значительным искажениям исследуемого процесса. В таких случаях используется взвешенное скользящее среднее или методы экспоненциального сглаживания.

Практика показывает, что метод простого скользящего среднего позволяет выработать объективную стратегию и четко определенные правила, например, в сфере торговли. Именно поэтому данный метод положен в основу многих компьютерных систем для торговых организаций. Как же можно использовать метод скользящего среднего? Наиболее распространенные способы применения скользящего среднего таковы.

Читать еще:  Как обновить браузер на телевизоре Самсунг

1. Сопоставление значения текущей цены со скользящим средним, используемым в этом случае как индикатор тенденции. Так, если цены находятся выше 65-дневного скользящего среднего, то на рынке имеется промежуточная (краткосрочная) восходящая тенденция. В случае более долгосрочной тенденции цены должны быть выше 40-недельного скользящего среднего.

2. Использование скользящего среднего как уровня поддержки или сопротивления. Закрытие цен выше данного скользящего среднего служит «бычьим» сигналом, закрытие ниже его — «медвежьим».

3. Отслеживание полосы скользящего среднего (другое часто используемое название — конверт). Эта полоса ограничивается двумя параллельными линиями, которые располагаются на определенную процентную величину выше и ниже кривой скользящего среднего. Эти границы могут служить индикаторами уровня поддержки или сопротивления соответственно.

4. Наблюдение за направлением наклона кривой скользящего среднего. Так, если после длительного подъема она выравнивается или поворачивает вниз, это может быть «медвежьим» сигналом.

5. Еще один простой метод наблюдения заключается в построении линий тренда по кривой скользящего среднего. Также иногда может быть целесообразно использование комбинации из двух скользящих средних.

Microsoft Excel располагает функцией Скользящее среднее (Moving Average), которая обычно используется для сглаживания уровней эмпирического временного ряда на основе метода простого скользящего среднего. Для вызова этой функции необходимо выбрать команду меню Tools^Data Analysis (Сервис1*Анализ данных). На экране раскроется окно Data Analysis, в котором следует выбрать значение Moving Average. В результате на экран будет выведено диалоговое окно Moving Average, представленное на рис. 11.1.

В диалоговом окне Скользящее среднее задаются следующие параметры.

1. Input Range (Входные данные) — в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

2. Labels in First Row (Метки в первой строке) — данный флажок опции устанавливается в том случае, если первая строка/столбец входного диапазона содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. Interval (Интервал) — в это поле вводится число уровней m, входящих в интервал сглаживания. По умолчанию v = 3.

4. Output options (Параметры вывода) — в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего нужно установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего необходимо установить флажок опции Standart Errors (Стандартные погрешности).

Рассмотрим конкретный пример. Допустим, за указанный период (1999-2002 гг.) необходимо выявить основную тенденцию изменения фактического объема выпуска продукции и характер сезонных колебаний этого показателя. Данные для примера представлены на рис. 11.2. На рис. 11.3 отображены вычисленные с помощью функции Moving Average (Скользящее среднее) значения сглаженных уровней и значения m=3.

Читать еще:  Что сделать летом

Ha puc. 11.4 rpaфически представлены фактические и прогнозируемые значения анализируемого ряда.

Рассчитанные сглаженные уровни не только дают представление об общей тенденции поведения изучаемого ряда, но и может быть также использованы для вычисления индексов сезонности IS , совокупность которых характеризует сезонную кривую исследуемого процесса. Средние индексы сезонности определяются по формуле

где — исходные уровни ряда, — сглаженные уровни ряда, u — число одноименных периодов.

На рис. 11.3 представлены вычисленные значения . Для получения средних индексов сезонности IX выполняется усреднение вычисленных значений , по одноименным кварталам.

Вычисленные показатели являются средними индексами сезонных колебаний объема выпуска продукции по кварталам.

77.243.189.108 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В чем заключается метод скользящей средней

Способ наименьших квадратов дает систему двух нормальных уравнений для нахождения параметров a и a1:

где у  исходный уровень ряда динамики; n  число членов ряда.

Система уравнений упрощается, если значения t подобрать так, чтобы их сумма равнялась нулю, т. е. начало времени перенести в середину рассматриваемого периода.

Если то

Исследование динамики соц.-экон. явлений и установление основной тенденции развития дают основание для прогнозирования (экстраполяции)  определения будущих размеров уровня экономического явления. Используют следующие методы экстраполяции:

средний абсолютный прирост с/показатель, исчисляемый для выражения средней скорости роста (снижения) соц.-эк. процесса. Определяется по формуле:

■ средний темп роста;

экстраполяцию на основе выравнивания по какой-либо аналитической формуле. Метод аналитического выравнивания-метод исследования динамики соц.-экон. явлений, позволяющий установить основные тенденции их развития.

Рассмотрим применение метода аналитического выравнивания по прямой для выражения основной тенденции на ПримерЕ 4.1. Исходные и расчетные данные определения параметров уравнения прямой:

Расчет необходимых значений дан в таблице примера. По итоговым данным определяем параметры уравнения:

Уравнение прямой будет иметь вид:

Подставляя в уравнение принятые обозначения t, вычислим выровненные уровни ряда динамики (см. значения в табл.).

На основе данных таблицы рассчитаем показатели колеблемости динамических рядов, которые характеризуются средним квадратическим отклонением и коэффициентом вариации.

Среднее квадратическое отклонение можно измерить по формуле:

Рассчитаем показатель колеблемости урожайности зерновых культур за анализируемый период:

Коэффициент вариации исчисляется по формуле: В нашем примере:

Источники:

http://www.ekonomika-st.ru/drugie/metodi/metodi-prognoz-1-3.html
http://studopedia.ru/7_120330_metod-skolzyashchego-srednego.html
http://studfile.net/preview/4239021/page:3/

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector