3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как разложить число на простые множители

umath.ru

Изучаем математику вместе!

Разложение числа на простые множители онлайн

Натуральное число называется делителем целого числа если для подходящего целого числа верно равенство . В этом случае говорят, что делится на или что число кратно числу .

Простым числом называют натуральное число , делящееся только на себя и на единицу. Составным числом называют число, имеющее больше двух различных делителей (любое натуральное число не равное имеет как минимум два делителя: и ). Например, числа – простые, а числа – составные.

Данная программа раскладывает число в произведение простых множителей онлайн. Разложить число на множители онлайн с её помощью очень просто.

Как разложить число на множители?

В школе на уроках математики разложение числа на множители обычно записывают столбиком (в две колонки). Делается это так: в левую колонку выписываем исходное число, затем

  • Берём самое маленькое простое число — 2 и по признакам делимости или обычным делением проверяем, делится ли исходное число на 2.
  • Если делится, то в правую колонку выписываем 2. Далее делим исходное число на 2 и записываем результат в левую колонку под исходным числом.
  • Если не делится, то берём следующее простое число — 3.

Повторяем эти шаги, при этом работаем уже с последним числом в левой колонке и с текущим простым числом. Разложение заканчивается, когда в левой колонке будет записано число 1.

Чтобы лучше понять алгоритм, разберём несколько примеров.

Решение. Записываем число 84 в левую колонку:

Берём первое простое число — два и проверяем, делится ли 84 на 2. Так как 84 оканчивается на 4, а 4 делится на 2, то и 84 делится на 2 по признаку делимости. Записываем 2 в правую колонку. 84:2 = 42, число 42 записываем в левую колонку. Получили вот что:

Теперь работаем уже с числом 42. Число 42 делится на 2, поэтому записываем 2 в правую колонку, 42:2 = 21, число 21 записываем в левую колонку.

Число 21 на 2 не делится, поэтому проверяем его делимость на следующее простое число — 3. Число 21 делится на 3, 21:3 = 7. Записали 3 в правую колонку, 7 — в левую. Получили

Число 7 — простое число, поэтому в правой колонке записываем 7, в левую пишем 1. В итоге получили:

Всё, число разложено!

В результате в правой колонке оказались записаны все простые множители числа 84. То есть 84=2∙2∙3∙7.

О калькуляторе

Программа раскладывает числа на множители методом перебора делителей. Для вычислений используется длинная арифметика, поэтому раскладывать можно даже большие числа. Однако если число простое или имеет большие простые делители, разложение его на множители происходит очень медленно.

Разложение числа на простые множители онлайн : 13 комментариев

Программа хорошая. Один вопрос. На каком языке написана программа?

  1. Андрей Автор записи 10.02.2016 в 20:18

Анастасия, на javascript.

Супер! Болела- пропустила тему. Оч помогло

Результат: Число 18014398241046528 — простое.

Согласен, что заданное число — простое, но в результате вообще указано четное число.

  1. Андрей Автор записи 06.10.2019 в 19:37

Евгений, программа была исправлена, сейчас работает корректно. Однако если в разложении числа присутствует большое простое число, то разложение может идти долго.

Я не понимаю хоть убейте — что такое «с точностью до порядка следования сомножителей»?? Что за «порядок»?? Какого ещё «следования»??
> 90 == 5 * 3 * 3 * 2.
Что здесь «порядок следования»??
Ну вот другой порядок следования, и чего?:
> 90 == 2 * 3 * 5 * 3.

  1. Андрей Автор записи 02.09.2019 в 12:42

> 90 == 5 * 3 * 3 * 2.
> 90 == 2 * 3 * 5 * 3.

Формулировка «с точностью до порядка следования сомножителей» означает, что нам важен не порядок, в котором идут простые множители числа, а важно количество раз, которое каждый простой множитель встречается в разложении числа.

В примере с числом 90 в разложении присутствует один множитель 2, два множителя 3 и один множитель 5. Когда говорят, что разложение единственно, то имеют в виду, что не существует разложения числа 90, в котором было бы, например, два множителя 2.

Добрый день! 6 класс, задание на контрольной. Необходимо разложить число 253 426. Возможно ли без нескончаемых проверок на деление определить, что число 126 713 (результат деления заданного числа на 2) и есть простой множитель?

Не понимаю, как можно поставить такую задачу в 6-м классе… Либо неверно истолковано условие, либо я слишком «закостенел»:
1. Все методы проверки числа на простоту — вероятностные (т.е. не 100%-ные)
2. Грубо говоря, есть только 3 рабочих метода разложения чисел на множители:
— последовательный перебор;
— метод Ферма (, где — ваше число, а — округлённый вверх корень из числа );
— квадратичное решето (это экзотика для разложения чисел от 100 разрядов и выше, иначе первые два метода сработают быстрее).

  1. Андрей Автор записи 06.10.2019 в 19:21
Читать еще:  Как путешествует письмо

Да, полностью согласен с Шуриком, мы не знаем способа, который позволил бы с уверенностью определить, что число 126 713 является простым, не прибегая к многочисленным проверкам на деление.

На мой взгляд, самым быстрым способом в данном случае является проверка, делится ли 126 713 на простые числа от 2 до . Делители проверяем только до квадратного корня потому, что если число составное, то его можно представить как произведение где и — целые числа больше 1, и одно из этих чисел точно не больше .

Всего имеется 71 простых чисел, не превышающих 355, но вручную за разумное время проверить делимость на 71 число не представляется возможным.

Существует тест Агравала — Каяла — Саксены, позволяющий протестировать число на простоту быстрее описанного выше алгоритма — но есть несколько НО — этот тест хорошо работает на компьютере и для действительно больших чисел.

Разложение числа на простые множители

Любое натуральное число n > 1 можно представить в виде произведения простых чисел. Это представление называется разложением числа n на простые множители.

Калькулятор разложения числа на простые множители разложит число на множители и выдаст подробное решение задачи.

Как разложить число на множители?

В школе на уроках математики разложение числа на множители обычно записывают столбиком (в две колонки). Делается это так: в левую колонку выписываем исходное число, затем

  • Берём самое маленькое простое число — 2 и по признакам делимости или обычным делением проверяем, делится ли исходное число на 2.
  • Если делится, то в правую колонку выписываем 2. Далее делим исходное число на 2 и записываем результат в левую колонку под исходным числом.
  • Если не делится, то берём следующее простое число — 3.

    Повторяем эти шаги, при этом работаем уже с последним числом в левой колонке и с текущим простым числом. Разложение заканчивается, когда в левой колонке будет записано число 1.

    Чтобы лучше понять алгоритм, на примере разложим на множители число 84.

    Записываем число 84 в левую колонку:

    Берём первое простое число — два и проверяем, делится ли 84 на 2. Так как 84 оканчивается на 4, а 4 делится на 2, то и 84 делится на 2 по признаку делимости. Записываем 2 в правую колонку. 84:2 = 42, число 42 записываем в левую колонку. Получили вот что:

    Теперь работаем уже с числом 42. Число 42 делится на 2, поэтому записываем 2 в правую колонку, 42:2 = 21, число 21 записываем в левую колонку.

    Число 21 на 2 не делится, поэтому проверяем его делимость на следующее простое число — 3. Число 21 делится на 3, 21:3 = 7. Записали 3 в правую колонку, 7 — в левую. Получили

    Число 7 — простое число, поэтому в правой колонке записываем 7, в левую пишем 1. В итоге получили:

    Всё, число разложено!

    В результате в правой колонке оказались записаны все простые множители числа 84. То есть 84=2∙2∙3∙7.

    Онлайн калькуляторы

    Calculatorium.ru — это бесплатные онлайн калькуляторы для самых разнообразных целей: математические калькуляторы, калькуляторы даты и времени, здоровья, финансов. Инструменты для работы с текстом. Конвертеры. Удобное решение различных задач — в учебе, работе, быту.

    Актуальная информация

    Помимо онлайн калькуляторов, сайт также предоставляет актуальную информацию по курсам валют и криптовалют, заторах на дорогах, праздниках и значимых событиях, случившихся в этот день. Информация из официальных источников, постоянное обновление.

    Разложение чисел на простые множители, способы и примеры разложения

    Данная статья дает ответы на вопрос о разложении числа на простыне множители. Рассмотрим общее представление о разложении с примерами. Разберем каноническую форму разложения и его алгоритм. Будут рассмотрены все альтернативные способы при помощи использования признаков делимости и таблицы умножения.

    Что значит разложить число на простые множители?

    Разберем понятие простые множители. Известно, что каждый простой множитель – это простое число. В произведении вида 2 · 7 · 7 · 23 имеем, что у нас 4 простых множителя в виде 2 , 7 , 7 , 23 .

    Разложение на множители предполагает его представление в виде произведений простых. Если нужно произвести разложение числа 30 , тогда получим 2 , 3 , 5 . Запись примет вид 30 = 2 · 3 · 5 . Не исключено, что множители могут повторяться. Такое число как 144 имеет 144 = 2 · 2 · 2 · 2 · 3 · 3 .

    Читать еще:  Как делать маски в вк

    Не все числа предрасположены к разложению. Числа, которые больше 1 и являются целыми можно разложить на множители. Простые числа при разложении делятся только на 1 и на самого себя, поэтому невозможно представить эти числа в виде произведения.

    При z , относящемуся к целым числам, представляется в виде произведения а и b , где z делится на а и на b . Составные числа раскладывают на простые множители при помощи основной теоремы арифметики. Если число больше 1 , то его разложение на множители p 1 , p 2 , … , p n принимает вид a = p 1 , p 2 , … , p n . Разложение предполагается в единственном варианте.

    Каноническое разложение числа на простые множители

    При разложении множители могут повторяться. Их запись выполняется компактно при помощи степени. Если при разложении числа а имеем множитель p 1 , который встречается s 1 раз и так далее p n – s n раз. Таким образом разложение примет вид a=p1 s 1· a = p 1 s 1 · p 2 s 2 · … · p n s n . Эта запись имеет название канонического разложения числа на простые множители.

    При разложении числа 609840 получим, что 609 840 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 7 · 11 · 11 ,его канонический вид будет 609 840 = 2 4 · 3 2 · 5 · 7 · 11 2 . При помощи канонического разложения можно найти все делители числа и их количество.

    Алгоритм разложения числа на простые множители

    Чтобы правильно разложить на множители необходимо иметь представление о простых и составных числах. Смысл заключается в том, чтобы получить последовательное количество делителей вида p 1 , p 2 , … , p n чисел a , a 1 , a 2 , … , a n — 1 , это дает возможность получить a = p 1 · a 1 , где a 1 = a : p 1 , a = p 1 · a 1 = p 1 · p 2 · a 2 , где a 2 = a 1 : p 2 , … , a = p 1 · p 2 · … · p n · a n , где a n = a n — 1 : p n . При получении a n = 1 , то равенство a = p 1 · p 2 · … · p n получим искомое разложение числа а на простые множители. Заметим, что p 1 ≤ p 2 ≤ p 3 ≤ … ≤ p n .

    Для нахождения наименьших общих делителей необходимо использовать таблицу простых чисел. Это выполняется на примере нахождения наименьшего простого делителя числа z . При взятии простых чисел 2 , 3 , 5 , 11 и так далее, причем на них делим число z . Так как z не является простым числом, следует учитывать, что наименьшим простым делителем не будет больше z . Видно, что не существуют делителей z , тогда понятно, что z является простым числом.

    Рассмотрим на примере числа 87 . При его делении на 2 имеем, что 87 : 2 = 43 с остатком равным 1 . Отсюда следует, что 2 делителем не может являться, деление должно производиться нацело. При делении на 3 получим, что 87 : 3 = 29 . Отсюда вывод – 3 является наименьшим простым делителем числа 87 .

    При разложении на простые множители необходимо пользоваться таблицей простых чисел, где a . При разложении 95 следует использовать около 10 простых чисел, а при 846653 около 1000 .

    Рассмотрим алгоритм разложения на простые множители:

    • нахождение наименьшего множителя при делителе p 1 числа a по формуле a 1 = a : p 1 , когда a 1 = 1 , тогда а является простым числом и включено в разложение на множители, когда не равняется 1 , тогда a = p 1 · a 1 и следуем к пункту, находящемуся ниже;
    • нахождение простого делителя p 2 числа a 1 при помощи последовательного перебора простых чисел, используя a 2 = a 1 : p 2 ,когда a 2 = 1 , тогда разложение примет вид a = p 1 · p 2 ,когда a 2 = 1 , тогда a = p 1 · p 2 · a 2 , причем производим переход к следующему шагу;
    • перебор простых чисел и нахождение простого делителя p 3 числа a 2 по формуле a 3 = a 2 : p 3 , когда a 3 = 1 , тогда получим, что a = p 1 · p 2 · p 3 , когда не равняется 1 , тогда a = p 1 · p 2 · p 3 · a 3 и производим переход к следующему шагу;
    • производится нахождение простого делителя p n числа a n — 1 при помощи перебора простых чисел с p n — 1 , а также a n = a n — 1 : p n , где a n = 1 , шаг является завершающим, в итоге получаем, что a = p 1 · p 2 · … · p n .

    Результат алгоритма записывается в виде таблицы с разложенными множителями с вертикальной чертой последовательно в столбик. Рассмотрим рисунок, приведенный ниже.

    Полученный алгоритм можно применять при помощи разложения чисел на простые множители.

    Примеры разложения на простые множители

    Во время разложения на простые множители следует придерживаться основного алгоритма.

    Произвести разложение числа 78 на простые множители.

    Решение

    Для того, чтобы найти наименьший простой делитель, необходимо перебрать все простые числа, имеющиеся в 78 . То есть 78 : 2 = 39 . Деление без остатка, значит это первый простой делитель, который обозначим как p 1 . Получаем, что a 1 = a : p 1 = 78 : 2 = 39 . Пришли к равенству вида a = p 1 · a 1 , где 78 = 2 · 39 . Тогда a 1 = 39 , то есть следует перейти к следующему шагу.

    Остановимся на нахождении простого делителя p 2 числа a 1 = 39 . Следует перебрать простые числа, то есть 39 : 2 = 19 (ост. 1 ). Так как деление с остатком, что 2 не является делителем. При выборе числа 3 получаем, что 39 : 3 = 13 . Значит, что p 2 = 3 является наименьшим простым делителем 39 по a 2 = a 1 : p 2 = 39 : 3 = 13 . Получим равенство вида a = p 1 · p 2 · a 2 в виде 78 = 2 · 3 · 13 . Имеем, что a 2 = 13 не равно 1 , тогда следует переходит дальше.

    Читать еще:  Как узнать свой номер Yota

    Наименьший простой делитель числа a 2 = 13 ищется при помощи перебора чисел, начиная с 3 . Получим, что 13 : 3 = 4 (ост. 1 ). Отсюда видно, что 13 не делится на 5 , 7 , 11 , потому как 13 : 5 = 2 (ост. 3 ), 13 : 7 = 1 (ост. 6 ) и 13 : 11 = 1 (ост. 2 ). Видно, что 13 является простым числом. По формуле выглядит так: a 3 = a 2 : p 3 = 13 : 13 = 1 . Получили, что a 3 = 1 , что означает завершение алгоритма. Теперь множители записываются в виде 78 = 2 · 3 · 13 ( a = p 1 · p 2 · p 3 ) .

    Ответ: 78 = 2 · 3 · 13 .

    Разложить число 83 006 на простые множители.

    Решение

    Первый шаг предусматривает разложение на простые множители p 1 = 2 и a 1 = a : p 1 = 83 006 : 2 = 41 503 , где 83 006 = 2 · 41 503 .

    Второй шаг предполагает, что 2 , 3 и 5 не простые делители для числа a 1 = 41 503 , а 7 простой делитель, потому как 41 503 : 7 = 5 929 . Получаем, что p 2 = 7 , a 2 = a 1 : p 2 = 41 503 : 7 = 5 929 . Очевидно, что 83 006 = 2 · 7 · 5 929 .

    Нахождение наименьшего простого делителя p 4 к числу a 3 = 847 равняется 7 . Видно, что a 4 = a 3 : p 4 = 847 : 7 = 121 , поэтому 83 006 = 2 · 7 · 7 · 7 · 121 .

    Для нахождения простого делителя числа a 4 = 121 используем число 11 , то есть p 5 = 11 . Тогда получим выражение вида a 5 = a 4 : p 5 = 121 : 11 = 11 , и 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

    Для числа a 5 = 11 число p 6 = 11 является наименьшим простым делителем. Отсюда a 6 = a 5 : p 6 = 11 : 11 = 1 . Тогда a 6 = 1 . Это указывает на завершение алгоритма. Множители запишутся в виде 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

    Каноническая запись ответа примет вид 83 006 = 2 · 7 3 · 11 2 .

    Ответ: 83 006 = 2 · 7 · 7 · 7 · 11 · 11 = 2 · 7 3 · 11 2 .

    Произвести разложение числа 897 924 289 на множители.

    Решение

    Для нахождения первого простого множителя произвести перебор простых чисел, начиная с 2 . Конец перебора приходится на число 937 . Тогда p 1 = 937 , a 1 = a : p 1 = 897 924 289 : 937 = 958 297 и 897 924 289 = 937 · 958 297 .

    Второй шаг алгоритма заключается в переборе меньших простых чисел. То есть начинаем с числа 937 . Число 967 можно считать простым, потому как оно является простым делителем числа a 1 = 958 297 . Отсюда получаем, что p 2 = 967 , то a 2 = a 1 : p 1 = 958 297 : 967 = 991 и 897 924 289 = 937 · 967 · 991 .

    Третий шаг говорит о том, что 991 является простым числом, так как не имеет ни одного простого делителя, который не превосходит 991 . Примерное значение подкоренного выражения имеет вид 991 40 2 . Иначе запишем как 991 40 2 . Отсюда видно, что p 3 = 991 и a 3 = a 2 : p 3 = 991 : 991 = 1 . Получим, что разложение числа 897 924 289 на простые множители получается как 897 924 289 = 937 · 967 · 991 .

    Ответ: 897 924 289 = 937 · 967 · 991 .

    Использование признаков делимости для разложения на простые множители

    Чтобы разложить число на простые множители, нужно придерживаться алгоритма. Когда имеются небольшие числа, то допускается использование таблицы умножения и признаков делимости. Это рассмотрим на примерах.

    Если необходимо произвести разложение на множители 10 , то по таблице видно: 2 · 5 = 10 . Получившиеся числа 2 и 5 являются простыми, поэтому они являются простыми множителями для числа 10 .

    Если необходимо произвести разложение числа 48 , то по таблице видно: 48 = 6 · 8 . Но 6 и 8 – это не простые множители, так как их можно еще разложить как 6 = 2 · 3 и 8 = 2 · 4 . Тогда полное разложение отсюда получается как 48 = 6 · 8 = 2 · 3 · 2 · 4 . Каноническая запись примет вид 48 = 2 4 · 3 .

    При разложении числа 3400 можно пользоваться признаками делимости. В данном случае актуальны признаки делимости на 10 и на 100 . Отсюда получаем, что 3 400 = 34 · 100 , где 100 можно разделить на 10 , то есть записать в виде 100 = 10 · 10 , а значит, что 3 400 = 34 · 10 · 10 . Основываясь на признаке делимости получаем, что 3 400 = 34 · 10 · 10 = 2 · 17 · 2 · 5 · 2 · 5 . Все множители простые. Каноническое разложение принимает вид 3 400 = 2 3 · 5 2 · 17 .

    Когда мы находим простые множители, необходимо использовать признаки делимости и таблицу умножения. Если представить число 75 в виде произведения множителей, то необходимо учитывать правило делимости на 5 . Получим, что 75 = 5 · 15 , причем 15 = 3 · 5 . То есть искомое разложение пример вид произведения 75 = 5 · 3 · 5 .

    Источники:

    http://umath.ru/calc/factorization/
    http://calculatorium.ru/math/factorization
    http://zaochnik.com/spravochnik/matematika/delimost/razlozhenie-chisel-na-prostye-mnozhiteli/

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector