2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое принцип относительности

Что такое принцип относительности

В 1905 г. в журнале «Анналы физики» вышла знаменитая статья А. Эйнштейна «К электродинамике движущихся тел», в которой была изложена специальная теория относительности (СТО). Затем было много статей и книг, поясняющих, разъясняющих, интерпретирующих эту теорию.
Принцип относительности Эйнштейна представляет собой фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя или равномерного прямолинейного движения. Иначе говоря, законы физики имеют одинаковую форму во всех инерциальных системах отсчета.
В основе СТО лежат два постулата, выдвинутых Эйнштейном.

  1. Все законы природы одинаковы во всех инерциальных системах отсчета.
    Уравнения, выражающие законы природы, инвариантны по отношению к любым инерциальным системам отсчета. Инвариантность – неизменность вида уравнения при переходе из одной системы отсчета в другую (при замене координат и времени одной системы – другими).
  2. Скорость света в пустоте одинакова во всех инерциальных системах отсчета и не зависит от скорости источника и приемника света.
    Все как-то пытались объяснить отрицательный результат опыта Майкельсона–Морли, а Эйнштейн – постулировал это, как закон.

В первом постулате главное то, что время тоже относительно – такой же параметр, как и скорость, импульс и др.

Второй – возводит отрицательный результат опыта Майкельсона–Морли в ранг закона природы: c = const.

Специальная теория относительности представляет физическую теорию, изучающую пространственно-временные закономерности, справедливые для любых физических процессов, когда можно пренебречь действием тяготения. СТО, опираясь на более совершенные данные, раскрывает новый взгляд на свойства пространства и времени. Эти свойства необходимо учитывать при скоростях движения, близких к скорости света.

Принцип относительности

При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта. [1]

Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике.

В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность).

Содержание

История

С исторической точки зрения, к открытию принципа относительности привела гипотеза о движении Земли, особенно о её вращении вокруг оси. Вопрос заключался в следующем: если Земля вращается, то почему мы этого не наблюдаем в экспериментах, совершённых на её поверхности? Обсуждение этой проблемы привело ещё средневековых учёных Николая Орема (XIV в.) и Ала ад-Дина Али ал-Кушчи (XV в.) к выводу, что вращение Земли не может оказать никакого влияние на какие-либо опыты на её поверхности. Эти идеи получили в эпоху Возрождения. Так, в сочинении «Об учёном незнании» Николай Кузанский писал:

Наша Земля в действительности движется, хоть мы этого не замечаем, воспринимая движение только в сопоставлении с чем-то неподвижным. Каждому, будь он на Земле, на Солнце или на другой звезде, всегда будет казаться, что он как бы в неподвижном центре, а все остальное движется.

Читать еще:  Откуда почтовые голуби знают куда лететь

Аналогичные мысли содержатся и в диалоге Джордано Бруно «О бесконечности, Вселенной и мирах»:

Как это заметили древние и современные истинные наблюдатели природы и как это показывает тысячью способов чувственный опыт, мы можем заметить движение только посредством известного сравнения и сопоставления с каким-либо неподвижным телом. Так, люди, находящиеся в середине моря на плывущем корабле, если они не знают, что вода течет, и не видят берегов, не заметят движения корабля. Ввиду этого можно сомневаться относительно покоя и неподвижности Земли. Я могу считать, что если бы я находился на Солнце, Луне или на других звездах, то мне всегда казалось бы, что я нахожусь в центре неподвижного мира, вокруг которого вращается все окружающее, вокруг которого вращается этот окружающий меня мир, в центре которого я нахожусь.

Однако «отцом» принципа относительности заслуженно считается Галилео Галилей, который придал ему чёткую физическую формулировку, обратив внимание, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. В своей книге «Диалоги о двух системах мира» Галилей сформулировал принцип относительности следующим образом:

Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия.

Идеи Галилея нашли развитие в механике Ньютона. В своих «Математических началах натуральной философии» (том I, следствие V) Ньютон так сформулировал принцип относительности:

Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения.

Во времена Галилея и Ньютона люди имели дело в основном с чисто механическими явлениями. Однако с развитием электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом, так как уравнения механики в известном тогда виде не менялись после преобразований Галилея, а уравнения Максвелла при применении этих преобразований к ним самим или к их решениям — меняли свой вид и, главное, давали другие предсказания (например, измененную скорость света). Эти противоречия привели к открытию преобразований Лоренца, которые делали применимым принцип относительности к электродинамике (сохраняя инвариантной скорость света), и к постулированию их применимости также к механике, что затем было использовано для исправления механики с их учетом, что выразилось, в частности, в созданной Эйнштейном Специальной теории относительности. После этого обобщённый принцип относительности (подразумевающий применимость и к механике, и к электродинамике, а также к возможным новым теориям, подразумевающий также преобразования Лоренца для перехода между инерциальными системами отсчета) стал называться «принципом относительности Эйнштейна», а его механическая формулировка — «принципом относительности Галилея».

Принцип относительности, включающий явно все электромагнитные явления, был, по-видимому, впервые введен Анри Пуанкаре начиная с 1889 года (когда им впервые высказано предположение о принципиальной ненаблюдаемости движения относительно эфира) до работ 1895, 1900, 1902, когда принцип относительности был сформулирован детально, практически в современном виде, в том числе введено его современное название и получены многие принципиальные результаты, повторенные позже другими авторами, такие, как, например, детальный анализ относительности одновременности, практически повторенный в работе Эйнштейна 1905. Пуанкаре также, по признанию Лоренца, был человеком, вдохновившим введение принципа относительности как точного (а не приближённого) принципа в работе Лоренца 1904, а впоследствии внёсшим необходимые исправления в некоторые формулы этой работы, в которых у Лоренца обнаружились ошибки.

Читать еще:  Какова высота Кремля

В этой принципиальной статье Х. А. Лоренца (1904 г.), содержавшей вывод преобразований Лоренца [2] и другие революционные физические результаты в достаточно завершённой форме (за исключением упомянутых технических ошибок, не следовавших из метода, исправленных Пуанкаре), он, в частности, писал: «Положение вещей было бы удовлетворительным, если бы можно было с помощью определенных основных допущений показать, что многие электромагнитные явления строго, то есть без какого-либо пренебрежения членами высших порядков, не зависят от движения системы. … На скорость налагается только то ограничение, что она должна быть меньше скорости света» [3] . Затем, в работе 1904 года Пуанкаре дополнительно углубил результаты Лоренца, донеся значение принципа относительности до довольно широких кругов физиков и математиков. Дальнейшее развитие практического использования принципа относительности для построения новой физической теории было в 1905 г. в статье А. Пуанкаре «О динамике электрона» (1905), называвшего его в этой работе «постулатом относительности Лоренца», и в практически одновременной статье А. Эйнштейна «К электродинамике движущихся тел» [4] .

Х. А. Лоренц писал в 1912 г.: «Заслуга Эйнштейна состоит в том, что он первый высказал принцип относительности в виде всеобщего строго и точно действующего закона» [5] . Это его утверждение, возможно, означает, что в у Эйнштейна принцип был выражен «с наибольшей резкостью», и Лоренц хотел отдать ему в этом должное, тем более что Пуанкаре после 1904 года приписывал этот принцип самому Лоренцу, очевидно, ради признания важности работ последнего вообще и работы 1904 года в частности, а Лоренц не хотел принять такой чести, считая, что его собственное понимание принципа относительности (а может быть, даже и его приятие) было недостаточным, в отличие от эйнштейновского. Лоренц выделил таким образом заслуги Эйнштейна, а не Пуанкаре, по-видимому, из-за того, что Пуанкаре «не шёл до конца», продолжая признавать возможность и вероятную продуктивность использования эфира как абсолютной системы отсчёта. [6] Возможно также, Лоренц просто указывал на отличие отрицающего эфир подхода Эйнштейна, основывающегося целиком лишь на принципе относительности, от подхода Пуанкаре, который продолжал разделять и сам Лоренц и который базировался не только на принципе относительности, взятом в качестве необсуждаемого постулата, но и на других аргументах, хотя результаты того и другого подхода совпадали, а в будущем Пуанкаре считал возможность обнаружения нарушений принципа относительности маловероятной (хотя абсурдной саму такую возможность не считал). Лоренц подчёркивает, что именно Эйнштейн перевёл принцип относительности из ранга гипотезы в ранг фундаментального закона природы.

В упомянутых и дальнейших работах перечисленных авторов, а также и других, среди которых следует выделить Планка и Минковского, применение принципа относительности позволило полностью переформулировать механику быстро движущихся тел и тел, обладающих большой энергией (релятивистская механика), и физика в целом получила сильнейший толчок к своему развитию, значение которого трудно переоценить. Впоследствии в целом к этому направлению в развитии физики (построенном на принципе относительности в отношении равномерно прямолинейно движущихся систем отсчета) применяется название специальная теория относительности.

Читать еще:  Почему Антарктида самый холодный материк

Очевидно, принцип относительности Эйнштейна и выросшая из него идея геометризации пространства-времени сыграли важную роль при распространении на неинерциальные системы отсчета (учитывая принцип эквивалентности), то есть в создании новой теории гравитации — общей теории относительности Эйнштейна. Остальная теоретическая физика также ощутила влияние принципа относительности не только непосредственно, но и в смысле повышенного внимания к симметриям.

Можно заметить, что даже если когда-либо обнаружится, что принцип относительности не выполняется точно, его огромная конструктивная роль в науке своего времени (длящаяся по меньшей мере до сих пор) настолько велика, что ее даже трудно с чем-нибудь сравнить. Опора на принцип относительности (а потом также ещё и на некоторые его расширения) позволила открыть, сформулировать и продуктивно разработать такое количество первостепенных теоретических результатов, практически не мыслимых без его применения, во всяком случае, если говорить о реальном пути развития физики, что его можно назвать основой, на которой построена физика.

Относительность Галилея.

Принцип относительности Галилея гласит:

Механические явления протекают одинаково во всех инерциальных системах отсчета, т. е. описывающие их законы динамики одинаковы. Поэтому все инерциальные системы отсчета равноправны.

Это значит, что уравнения, выражающие законы механики, не меняются при преобразованиях Галилея.

Преобразования Галилея заключаются в преобразовании координат и времени t движущейся материальной точки при переходе от одной инерциальной системы отсчета к другой:

Для координаты x это выражается так:

Здесь и — радиус-векторы, и — координаты точки в двух инерциальных системах отсчета, а υ – относительная скорость движения этих двух инерциальных систем отсчета. Время не изменяется при переходе из одной инерциальной системы отсчета в другую: принцип относительности Галилея основан на представлениях об абсолютном времени и абсолютном пространстве. Это означает, что во всех инерциальных системах отсчета события протекают одинаково (одновременно).

В некоторый начальный момент времени t = возьмем одну из систем координат К (XYZ) и совместим с подвижной – K´(X´Y´Z´) . Зафиксируем систему K. В любой последующий момент времени положение некоторой точки А, движущейся относительно обеих систем координат, определяется в системе K радиус-вектором , а в системе K´ — радиус-вектором . Вектор, соединяющий начало координат О неподвижной системы координат с началом коорди­нат О´ подвижной системы, равен вектору переме­щения системы K´ относительно K: . Согласно правилу сложения векторов, . Выразив вектор перемещения через скорость движения системы K´ относительно K, получим . Исходя из этого,

Из этого уравнения вытекает закон сложения скоростей:

где — скорости точки относительно систем K и K´ соответственно. Дифференцируем по времени это выражение и получим w = w´. Это значит, что ускорение точки в данный момент времени одинаково относительно любой из систем, неускоренно движущихся относительно друг друга.

Галилей на основании наблюдений сформулировал классический принцип относи­тельности, согласно которому законы механики одинаковы в любых инерциальных системах отсчета. То есть, уравнения движения относительно любых инерциальных систем совпадают друг с другом. Это значит, что уравнение mw = F эквивалентно уравнению m´w´ = F´.

Из принципа Галилея следует, что F = F´, т. е. силы, действующие на точку, неизменны при переходе от одной инерциальной системы к другой, также инерциальной системе.

Следовательно, все величины, входящие в уравнение Ньютона, не изменяются при преобразовании от одной инерциальной системы к другой инерциальной системе.

Источники:

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5%20%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%8B%20%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B8/08-2.htm
http://dic.academic.ru/dic.nsf/ruwiki/6845
http://www.calc.ru/Otnositelnost-Galileya.html

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector