2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое интерференция

Значение слова &laquoинтерференция»

ИНТЕРФЕРЕ́НЦИЯ, -и, ж. Физ. Взаимное усиление или ослабление звуковых, электромагнитных волн с одинаковыми периодами при их наложении друг на друга. Интерференция звука. Интерференция света.

[От лат. inter — взаимно и ferens, ferentis — несущий, переносящий]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Интерференция (физика) — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Интерференция света — частный случай интерференции для видимой области электромагнитного спектра;

Интерференция полей напряжений — в физике кристаллов; см. также Мартенситное превращение;

Интерференция (лингвистика) — последствие влияния одного языка на другой.

Интерференция (психология) — взаимоподавление одновременно осуществляющихся психических процессов; обусловлена ограниченным объёмом распределяемого внимания;

Интерференция (ботаника) — вариант конкуренции; неблагоприятные взаимодействия, возникающие при наличии близких соседей того же или близких видов

Интерференция (зоология) — угнетение или уничтожение животных животными своего же вида;

Интерференция (генетика) — подавление кроссинговера на участках, непосредственно соседствующих с точками уже произошедшего обмена; на практике означает понижение частоты двойных кроссинговеров по сравнению с теоретическим значением.

Интерференция скважин — взаимодействие работающих нефтяных, газовых или водяных скважин, пробуренных с поверхности на один продуктивный пласт или на разные, но гидродинамически связанные друг с другом пласты; законы интерференции скважин изучаются специальной наукой о фильтрации — подземной газогидродинамикой.

ИНТЕРФЕРЕ’НЦИЯ [тэ], и, ж. [фр. interférence] (физ.). Явление взаимодействия звуковых, световых или иных волн, исходящих из разных источников. Цветное фотографирование основано на интерференции.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

интерференция

1. физ. взаимное усиление или ослабление при наложении друг на друга звуковых, электромагнитных волн с одинаковыми периодами

2. психол. взаимоподавление одновременно осуществляющихся процессов, прежде всего относящихся к познавательной сфере, обусловленное ограниченным объемом распределяемого внимания

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова верчение (существительное):

Интерференция света

Интерференция света

Явление интерференции свидетельствует о том, что свет — это волна.

Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.

Условия интерференции

Волны должны быть когерентны. Когерентность – согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз.

Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели.
Свет от точечного монохроматического источника S падал на два небольших отвер­стия на экране. Эти отверстия действуют как два когерентных источника света S1 и S2.
Волны от них интерферируют в области перекрытия, проходя разные пути: 1 и ℓ2.
На экране наблюдается чередование светлых и темных полос.

Условие максимума.

Пусть разность хода между двумя точками ,

тогда условие максимума:
т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, . ).

Условие минимума

Пусть разность хода между двумя точками ,

тогда условие минимума: ,

т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, . ).

Интерференция света в тонких пленках

Различные цвета тонких пленок — результат интерфе­ренции двух волн, отражаю­щихся от нижней и верхней по­верхностей пленки. При отражении от верх­ней поверхности пленки проис­ходит потеря полуволны. Сле­довательно, оптическая раз­ность хода .

Читать еще:  Как образуются горы

Тогда условие максимального усиле­ния интерферирующих лучей в отраженном свете следую­щее: .

Если потерю полуволны не учитывать, то .

Кольца Ньютона

Интерференционная карти­на в тонкой прослойке воздуха между стеклянными пластина­ми — кольца Ньютона.

Волна 1 — результат отра­жения ее от точки А (граница стекло —воздух). Волна 2 — отражение от плоской пласти­ны (точка В, граница воздух — стекло). Волны когерентны: возникает интерференционная картина в прослойке воздуха между точками А и В в виде-концентрических колец. Зная радиусы колец, можно вычислить длину волны, используя формулу , где r — радиус кольца, R — радиус кри­визны выпуклой поверхности линзы.

Использование интерференции в технике

Проверка качества обра­ботки поверхности до одной де­сятой длины волны. Несовершенство обра­ботки определяют но искрив­лению интерференционных по­лос, образующихся при отра­жении света от проверяемой поверхности. Интерферометры служат для точного измерения показателя преломления газов и других веществ, длин световых волн.

Просветление оптики. Объективы фотоаппаратов и кинопроекторов, перископы под­водных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполиро­ванная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, исполь­зуется явление интерференции света.

На поверхность оптическо­го стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна: . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следо­вательно, , где n — показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому . При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы пол­ное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета):

.

Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света.

Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки

Интерференция и дифракция

Интерференция – это сложение колебаний. В результате интерференции в каких-то точках пространства происходит рост амплитуды колебаний, а в других – их уменьшение. Неизменная картина интерференции наблюдается только тогда, когда разность складываемых колебаний постоянна (они когерентны). Очевидно, что когерентными могут быть колебания одинаковой частоты. Поэтому чаще всего изучают интерференцию монохроматических колебаний.

На фото изображена интерференция волн на поверхности воды.

Интерференцию световых волн можно наблюдать, если положить стеклянную линзу на стеклянную пластинку (см. рисунок справа) и посмотреть на них сверху. Луч света (красные стрелки) падает сверху на линзу, преломляется, отражается от её нижней искривлённой поверхности и выходит из линзы (луч 2). Однако часть луча, упавшего на нижнюю поверхность линзы, выходит из неё, падает на стеклянную пластинку, отражается от неё, проходит через линзу и выходит из неё (луч 1). Лучи 1 и 2 когерентны, т.к. они возникли из одного луча.

Если попав в глаз, фаза этих лучей будет отличаться на целое число периодов, то эти лучи будут усиливать друг друга и мы увидим яркое пятно. В тех случаях, когда их разность фаз составит нечётное число полупериодов (Т/2, 3Т/2, 5Т/2 и т.д.) лучи уничтожат друг друга, и мы увидим тёмное пятно.

Очевидно, что разность фаз между лучами 1 и 2 зависит от толщины зазора между линзой и пластинкой. Поэтому, смотря сверху мы увидим чередующиеся тёмные и светлые кольца – кольца Ньютона (см. рисунок).

Интерференция световых волн происходит, когда на пути света оказывается непрозрачный экран с двумя параллельными щелями – S1 и S2 (опыт Юнга, см. ниже). Согласно принципу Гюйгенса каждая из щелей становится вторичным источником сферических волн. S1 и S2 – когерентные источники, т.к. они произошли от одного источника света. Волны от S1 и S2 налагаются друг на друга, и если на каком-то расстоянии от щелей поставить непрозрачный экран, то на нём появятся чередующиеся тёмные и окрашенные (яркие) полосы. При этом напротив точки, лежащей между щелями, будет центральная яркая полоса, которую называют интерференционным максимумом «0» порядка. Симметрично от центральной яркой полосы располагаются темные полосы — интерференционные минимумы «1» порядка, а потом яркие полосы — интерференционные максимумы «1» порядка, и т.д. Очевидно, что разность хода лучей от S1 и S2 в точке на экране, где наблюдается интерференционный максимум m-го порядка, равна ml, где l- длина волны света.

Читать еще:  Как пополнить яндекс деньги через терминал

На рисунке b показано, как можно вычислить угол q, под которым виден интерференционный максимум «1» порядка. Из рисунка следует, что , где d – расстояние между щелями. Также можно вычислить расстояние x от центральной яркой полосы на экране до интерференционного максимума «1» порядка , где L – расстояние до экрана, где наблюдают интерференцию. Необходимо отметить, что простота этих формул вытекает из того, что L>>d.

На фото ниже показаны интерференционные полосы для синего света (левая), для красного света (средняя) и для белого света (правая).

Интерференционные полосы можно наблюдать в свете, отражённом от вертикально расположенной мыльной плёнки (см. рисунок ниже). Толщина плёнки увеличивается сверху вниз, что изменяет разность хода между лучами, отражёнными от обеих поверхностей плёнки. На рисунке а схематически показан верхний красный луч, падающий слева на фиолетовую плёнку (в разрезе). Этот луч сразу отражается и получает обозначение (луч 1). Другая часть того же луча преломляется в плёнке, отражается от другой её поверхности (луч 2) и продолжает двигаться рядом с лучом 1. Если при этом разница фаз между лучами 1 и 2 станет кратной периоду колебаний, то лучи будут усиливать друг друга, и мы увидим яркую полосу. Если же эта разница фаз составит нечётное число полупериодов (Т/2, 3Т/2, 5Т/2 и т.д.), то они уничтожат друг друга, а мы увидим тёмную полосу.

Следует отметить, что волны при отражении изменяют фазу на 180° (или p), если отражаются от более оптически плотной среды, например, при отражении света в воздухе от воды. Если отражение происходит от менее оптически плотной среды, то изменение фазы волны не происходит.

Пусть, например, показатели преломления n1 n3 (см. рисунок ниже). Найдём разность фаз Dj между лучами 1 и 2 после прохождения лучом 2 через тонкую плёнку в обоих направлениях. Луч 1 изменил свою фазу после отражения на p. Луч 2 вернётся в среду с n1 , опоздав на число периодов, равное отношению двойной толщины плёнки (2h) к длине волны света в ней, l2, т.е.

где l0 – длина волны света в вакууме.

Дифракцией называют явления, связанные со свойством волн огибать препятствия, т.е отклоняться от прямолинейного распространения.

На рисунке ниже показано, как меняют направление звуковые волны после прохождения через отверстие в стене. Согласно принципа Гюйгенса области 1-5 становятся вторичными источниками сферических звуковых волн. Видно, что вторичные источники в областях 1 и 5 приводят к огибанию волнами препятствий.

Любое препятствие искажает фронт распространения волн. Согласно принципу Гюйгенса границы препятствия становятся вторичными источниками волн, а их интерференция за препятствием приводит к возникновению устойчивой картины — чередования максимумов и минимумов интенсивности. Эти максимумы и минимумы называют дифракционными, т.к. они произошли в результате дифракции волн. Ниже показана дифракция волн, распространяющихся слева направо за шаром. Видно, что дифракция волн практически уничтожает тень от шара, а в её центре появляется область, где интенсивность волн очень велика.

Читать еще:  Почему светятся светлячки

Ниже показано фото тени от монеты на экране при освещении её источником монохроматического света. Видно, что в центре тени есть яркое пятно, образованное интерференцией лучей, огибающих край монеты. Интерференция этих лучей приводит к появлению чередующихся тёмных и ярких колец, окружающих тёмный диск тени. Этот эксперимент тоже является иллюстрацией явления дифракции света.

Ниже показано увеличенное фото тени верхнего края непрозрачной стены на экране. Видно, что переход из тёмной части тени в освещённую происходит не резко, а через последовательность чередующихся тёмных и ярких полос. Эти полосы являются результатом дифракции лучей света на краю препятствия и последующей их интерференции.

Щель в непрозрачном экране (см. рис. ниже) тоже искажает фронт распространения волн. Согласно принципу Гюйгенса границы щели и она сама становятся вторичными источниками волн, а их последующая интерференция приводит к возникновению устойчивой картины — чередования дифракционных максимумов и минимумов интенсивности света (см. самую правую панель рисунка).

Если расстояние L до экрана, на котором наблюдают дифракционную картину, гораздо больше ширины a щели (см. рисунок ниже), то угол, под которым виден первый дифракционный минимум номер n (см. yn на рисунке), можно вычислить из соотношения

где l — длина волны света. Коричневой кривой показан график зависимости интенсивности света от положения на экране. Самая правая панель – соответствующая дифракционная картина.

Если щель освещается двумя источниками света S1 и S2 , то каждый из них будет создавать на экране свою дифракционную картину (см. рисунок ниже). Если угол q, под которым видны эти источники, больше ширины центрального дифракционного максимума (2l/a) то на экране можно будет различить ДВА ярких дифракционных максимума. В противном случае на экране будет только один центральный максимум слегка большей интенсивности. Таким образом, чем больше ширина щели, тем легче различить на экране близко расположенные источники света.

Дифракция света наблюдается, если он проходит через круглое отверстие (см. левый рисунок). При этом дифракционная картина состоит из центрального яркого пятна, окружённого чередой тёмных и ярких колец. При этом угловой диаметр q1 центрального яркого пятна равен

где D – диаметр отверстия. Если угол, под которым видны два источника света больше q1 , их центральные максимумы не перекрываются и вполне различимы (см. среднее фото). В противном случае эти максимумы сливаются в один (см. самое правое фото).

Таким образом, чем больше будет диаметр входной линзы или зеркала телескопа, тем больше звёзд мы увидим на небе.

Дифракционная решётка – это прозрачная пластинка, на которую через одинаковое расстояние d (период решётки) нанесены параллельные штрихи. Плоский фронт световой волны падает слева на дифракционную решётку (см. рисунок) и претерпевает дифракцию на её штрихах. После интерференции прошедших через решётку лучей появляются направления, вдоль которых наблюдаются дифракционные максимумы и минимумы интенсивности света.

Угол qn, под которым виден первый дифракционный максимум номер n, легко вычислить, если считать, что расстояние до экрана Р гораздо больше периода решётки d:

На рисунке справа показано, как дифракционная решётка расщепляет голубой луч лазера.

Дифракционная решётка не только может отклонять лучи, как призма, но и разлагать их в спектр. Справа показано, что происходит с белым светом, после того, как он проходит через дифракционную решётку. Видно, что дифракционная картина в этом случае представляет собой наложение дифракционных картин для цветов, образующих белый свет

Явления дифракции и интерференции света помогают Природе раскрашивать всё живое, не прибегая к использованию красителей

Источники:

http://kartaslov.ru/%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0/%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%8F
http://www.eduspb.com/node/1808
http://pikabu.ru/story/interferentsiya_i_difraktsiya_4225922

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector