32 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое аллотропия

Аллотропия

Изучение простых веществ и их свойств чрезвычайно важно для неорганической химии и закладывает основу для ее изучения. Кардинальная особенность простых веществ заключается в том, что при рассмотрении их свойств не нужно учитывать изменения их состава, поскольку он всегда один и тот же. Но и у простых веществ необходимо уделить особое внимание явлению аллотропии. Это позволит выявлять зависимость свойств веществ от их химического строения.

Аллотропия (от греческого «tropos» — признак) — это процесс, при котором один химический элемент может трансформироваться в два или больше простых веществ. К примеру, атомы кислорода могут преобразоваться в два других различных вещества – кислород и озон, а сера – кристаллическую и пластическую серу. Вещества, которые образовались из атомов одно химического элемента, называют аллотропными модификациями этого элемента. Аллотропия вызвана разнящимся набором молекул в простом веществе или разным местонахождением частиц в кристаллической решётке этого вещества.

В 1841 году явление аллотропии стало известно науке благодаря ученому Йенсу Якобу Берцелиусу, позднее тщательные и долгие исследования этого явления были проделаны А. Шреттером. В 1860 году, вскоре после того как был открыт закон Авогадро, по которому в веществах одного объема, где установлены равные температуры и давление, существует равное количество молекул, ученые поняли, что элементы имеют возможность находиться в форме молекул со множеством атомов. К примеру, О2 — кислород и О3 — озон. В самом начале двадцатого века стало понятно, что отличия в кристаллической конструкции простых веществ — это еще одна причина аллотропии.

Аллотропные модификации

На сегодняшний день насчитывается больше четырехсот аллотропных модификаций простых веществ. К примеру, алмаз и графит – это аллотропные модификации углерода, хотя эти вещества внешне совершенно непохожи. У графита структура гексагональная слоистая, а у алмаза выглядит как правильно соединенная с друг другом сетка тетраэдрических образований.

Иногда это явление объединяют с полиморфизмом. Это возможность веществ твердого агрегатного состояния находится в двух или больше видоизменениях с различной кристаллическим построением и свойствами при одинаковом химическом составе. Но аллотропия имеет отношение лишь к простым веществам, вне зависимости от их агрегатного состояния, а полиморфизм — к любому твердому вещество, без указания на то, простое оно или сложное.Несмотря на количество аллотропных модификаций у химического элемента, самым стойким и не разрушающимся оказывается, в большинстве, только одно. Вот примеры одних из самых распространенных примеров аллотропии веществ: углерод может образовать множество аллотропных модификаций — алмаз, графит, карбин и т.д. Кремний образует два аллотропных видоизменения: аморфный и кристаллический кремний.

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;
ж) однослойная нанотрубка

Разнообразие сложных веществ наблюдается из-за их разного количественного состава. Его можно определить по набору электронов, находящихся на электронном уровне атома и количественное содержание протонов и нейтронов в ядре. Но было обнаружено, что химические элементы могут образовывать различные вариации, у которых у ядер один и тот же заряд, но при этом у них разные массы. Такие разновидности атомов называются изотопами. Явления аллотропии и изотопии являются подтверждениями многообразия неорганических веществ.

Аллотропия — это. Понятие, причины и примеры аллотропии

Химия изучает свойства и строение простых веществ. В большинстве своем они остаются неизменными в любых ситуациях. Однако есть ряд элементов, способных менять свои свойства в различных своих состояниях. Такое явление называется аллотропией. Знание о поведении элементов, подверженных аллотропии, расширяет понимание устройства мира и поведения в нем веществ и элементов.

Определение

Аллотропия — это возможность элемента трансформироваться в другой. В некоторых случаях даже в два или три. Если переводить название термина с греческого языка, то аллотропия — это «другое свойство». То есть буквальный перевод раскрывает сущность явления.

Читать еще:  Где можно приобрести кота

Виды аллотропии

Аллотропия, свойственная некоторым веществам, условно делится на два вида — по составу и по строению. В первом случае различно число атомов в молекуле. Во втором — строение кристаллической решетки.

В химии аллотропия — это изменение вещества независимо от того, жидкое оно, твердое или газообразное. Единственное отступление от терминологии появляется в работе с твердыми веществами, их строение сложнее, для их трансформации используется слово «полиморфизм», в переводе с греческого означающее «многообразный».

Каким веществам свойственна аллотропия

Не все вещества способны преобразоваться из сложных в простые даже под действием температур или других воздействий. Это может происходить только с теми из них, у которых есть способность к образованию гомоцепных структур или хорошо окисляющихся. Именно поэтому аллотропия веществ свойственна неметаллам. Хотя справедливости ради следует сказать, что есть металлы, способные преобразовываться в простые элементы, но это, скорее, полуметаллы.

Примеры аллотропии

Для понимания процесса существует ряд примеров преобразования вещества, причем оно бывает обратимым и необратимым. То есть вещество может после воздействия на него температуры или давления вернуться к первоначальному состоянию. Но бывает так, что оно остается в видоизмененном состоянии. Например, ромбическая сера — при нагревании ее до температуры 95,5 градуса по Цельсию она преобразуется в моноклинную форму. При снижении температуры до 95,5 градуса наступает обратное преобразование — из моноклинной формы в ромбическую.

Другой пример аллотропии — это изменение белого фосфора в черный. В данном случае для проведения преобразования требуется температура в 200 градусов по Цельсию и давление в 1,25 г Па. При воздействии тех же температур и давления на преобразованный черный фосфор он не сможет вернуться к первоначальному состоянию.

Как уже упоминалось, явление аллотропии свойственно и некоторым металлам. Но из-за сложности их структуры переходы из одного в другое состояние могут чередоваться. Например, в нормальных условиях белое олово является пластичным металлом, но при нагревании его при температуре 173 градуса по Цельсию оно перестраивает свою кристаллическую решетку до очень хрупкого состояния, а при снижении температуры до 13 градусов кристаллическая решетка принимает вид кубической алмазоподобной и делает вещество порошкообразным.

Модификации неметаллов

Самыми яркими и многообразными физическими свойствами аллотропии обладает углерод. Он способен перерождаться в самое большое количество аллотропных форм, причем с различными не только свойствами, но и строением кристаллической решетки. Взять, например, графит и алмаз. Формы одного вещества, но с разными строениями кристаллических решеток – графит чуть плотнее порошка, а алмаз — самое крепкое вещество на земле. И это уже не говоря об углеродных нанотрубках, лонсдейлите, фуллерене, карбине и других формах углерода.

Аллотропия характерна для серы. В нормальных условиях структура вещества моноклинная, а под воздействием температур может преобразоваться в пластическую и следом за этим в ромбовидную.

Фосфор способен изменяться в 11 форм. Причем 3 из них — белый, черный, красный — даже встречаются в природе, остальные можно получить искусственным путем. Отличается одна форма вещества от другой количеством атомов в молекуле. Различными цветами в химии представлен селен. Он также бывает серный, черный и красный.

Очень известная аллотропия — это кислород. Он видоизменяется до озона под действием температуры или электрического тока. Известный пример природного воздействия – молния. Во время разряда электрического поля кислород превращается в озон.

Модификации полуметаллов

Бор — это полуметалл, встречающийся в природе в аморфной и кристаллической форме. Но у него есть еще 10 известных науке форм.

Аморфным и кристаллическим бывает кремний. Сурьма в четырех формах по своей структуре представляется металлом, и в трех она аморфная, аллотропная.

Читать еще:  Какой макияж подойдет к синему платью

Как и в случае с фосфором или селеном, мышьяк бывает серый или черный, в зависимости от формы – полимер или неметаллическая структура.

Модификации металлов

Самым широким спектром форм среди металлов обладает железо. В первом виде феррита, с характерной объемно-центрированной кубической кристаллической решеткой, железо способно существовать в температурных пределах от 0 до 769 градусов по Цельсию. Имеет свойства ферромагнетиков.

Второй тип феррита существует при температурах в диапазоне 769-917 градусов по Цельсию. Отличается объемно-центрированной кубической кристаллической решеткой. Магнетические свойства проявляет как парамагнетик.

Третий тип железа называется аустенит, характерен гранецентрированной кубической кристаллической решеткой. Способен существовать только при температурах от 917 до 1394 градусов по Цельсию. Магнитных свойств не имеет.

Четвертый тип железа возникает при температурах свыше 1397 градусов по Цельсию. Магнитных свойств не имеет, характерен объемно-центрированной кубической кристаллической решеткой.

Другой металл, имеющий несколько типов преобразования, — это олово. В аллотропной форме может существовать в виде порошка с кристаллической решеткой, подобной алмазной. Это так называемое серое олово. Есть и более привычная форма металла – белое олово. Оно встречается в виде пластичного метала серебряного цвета. Третья форма характерна тугоплавкостью, так как обладает ромбической кристаллической решеткой, называется она гамма-оловом.

Заключение

Все металлы, полуметаллы и неметаллы различных аллотропных типов с характерным строением кристаллических решеток, массой, количеством и зарядом протонов и нейтронов могут встречаться в природе в чистом, натуральном виде или получаются только в лаборатории. В обычных условиях они не сохраняют своей стабильности. Все это говорит о многообразии химических элементов и перспективах открытий новых доселе неизвестных науке форм и типов веществ. Такие исследования ведут к развитию всех отраслей жизнедеятельности человека.

Что такое аллотропия

Аллотропия – что это?

Явление аллотропии подразумевает возможность создания из одного и того же элемента определенного количества различных веществ. Например, кислород и озон в своем составе содержат только лишь оксиген. Вопрос о том, как это вообще возможно, на протяжении длительного периода времени интересовал многих людей. На сегодняшний момент ученые легко могут объяснить все особенности этого процесса.

Определение понятия

Под аллотропией подразумевается существование нескольких простых веществ, в основе которых присутствует один и тот же единственный химический элемент. Впервые такое явление описал известный шведский химик и минеролог Йенс Берцелиус.

Аллотропия по своей сути имеет довольно много общего с кристаллическим полиморфизмом. В связи с этим у ученых на протяжении длительного периода времена существовали достаточно серьезные споры. Это связанно с тем, что часть специалистов считали, что аллотропия и кристаллический полиморфизм – это одно и то же явление.

В настоящее же время от этой теории большинство ученых отошло. Мировое научное сообщество пришло к выводу о том, что кристаллический полиморфизм может касаться только лишь твердых тел, тогда как аллотропия – газов и жидкостей.

Причины возникновения аллотропии

Далеко не все элементы способны образовывать несколько разных простых веществ. Такая способность напрямую зависит от структуры молекул. Чаще всего подобное явление наблюдается у элементов, которые имеют переменные окислительные степени. Это касается таких групп, как:

Причины аллотропии могут быть нескольких типов. К наиболее вероятным из них ученые относят такие факторы, как:

  1. Различное количество атомов, необходимых для образования одной молекулы.
  2. Отличающийся порядок сопряжения атомов в одну молекулу.
  3. Параллели между спинами электронов.
  4. Разновидность кристаллической решетки.

Для того чтобы наглядно понять, каким образом может существовать явление аллотропии, необходимо рассмотреть несколько наиболее примечательных примеров, широко встречающихся в природе.

Кислород и озон

Аллотропия кислорода и озона – это вариант того, как различное количество атомов может существенно влиять не только на физические, но и на химические свойства простых веществ. Для того чтобы понять это, необходимо разобраться в особенностях каждого из этих газов:

  1. Кислород.Он не имеет вкуса и запаха. Масса этого газа в 1,5 раза легче массы озона. Кислород неплохо растворяется в воде. Чем ниже температура окружающей среды, тем быстрее происходит этот процесс. Используется данный газ для осуществления дыхания живыми организмами. Вследствие этого кислород считается жизненно важным химическим веществом для жизнедеятельности на планете.
  2. Озон.Это газообразное вещество имеет голубоватый цвет. Характерный запах озона легко можно почувствовать на улице после прошедшего дождя. В сравнении с кислородом этот газ более активный. Это связанно с тем, что при его распаде появляется молекула кислорода и один атом оксигена. Последний в свою очередь вступает в связь с другими атомами, образуя, таким образом, новые вещества.

Аллотропия оксигена была исследована из-за своего распространения одной из первых.

Читать еще:  Как пользоваться termux

Алмаз и графит

Молекула углерода отличается тем, что она имеет постоянное количество атомов. При этом из последних могут образовываться самые разнообразные простые вещества. Это касается, к примеру, алмаза и графита. Их отличия заключаются в следующем:

  1. Алмаз.Это вещество признано учеными одним из наиболее твердых на Земле. Это связанно с тем, что атомы в нем имеют достаточно прочные ковалентные связи во всех направлениях кристаллической решетки. Таким образом, создается объемная система тетраэрдов.
  2. Графит.В этом веществе прочные связи в кристаллической решетке образовываются только лишь в горизонтальном направлении. Вследствие этого разломать стержень из графита вдоль очень сложно.

Аллотропия алмаза и графита – один из примеров того, как из одного и того же химического элемента из-за разной кристаллической решетки образуются существенно отличающиеся друг от друга простые вещества.

Внутренняя структура молекул серы может быть различной. Вследствие этого происходит образование различных простых веществ, среди которых стоит выделить такие:

  1. Сера с ромбической структурой молекул.Она считается наиболее устойчивой. В ее состав входит 8 атомов, которые образовывают твердое вещество желтоватого оттенка. Оно неспособно растворяться в воде. К тому же, последняя его даже не смачивает. При этом показатели проводимости тепла и тока у такой серы находятся на низком уровне.
  2. Сера с моноклинной структурой. Ее атомы образовывают параллелепипеды со скошенными углами. Таким образом, создается вещество, похожее на иглу темно-желтого цвета.
  3. Сера с пластической структурой. Ее создают посредством расплавления других типов этого вещества и помещения их в воду. Таким образом, у них рушится структура, вследствие чего возникают полимерные цепи разной длины. Они в свою очередь создают резиноподобную пасту светло-коричневого оттенка.

Аллотропия серы – еще один пример влияния внутренней структуры молекул на создание разных по своим свойствам простых веществ.

Фосфор

На сегодняшний момент известно около 11 видов фосфора. Это обусловлено аллотропией, причина которой связана с кристаллической решеткой молекул этого химического элемента. Для того чтобы изменить внутреннее строение, необходимо создать определенные условия.

К примеру, белый фосфор может быть выделен посредством испарения мочи. Такое вещество будет очень активным, вследствие чего при повышении температурных показателей окружающей среды до 40 градусов по Цельсию оно воспламенится из-за реакции с кислородом.

Для получения красного фосфора достаточно всего лишь увеличить давление и температуру в атмосфере двуокиси углерода. Это вещество отличается средней активностью. Вследствие этого оно не светится в темноте. При нагревании красный фосфор преобразовывается в пар. Это можно наблюдать при зажигании спичек.

Аллотропия – это образование нескольких отличающихся друг от друга веществ из одного и того же химического элемента. Наблюдать такое явление можно преимущественно у неметаллов. Его основные причины заключаются, как в разном количестве атомов, что образовывают молекулу, так и в изменениях кристаллической решетки.

Источники:

http://www.alto-lab.ru/shkola/allotropiya/
http://www.syl.ru/article/469879/allotropiya—eto-ponyatie-prichinyi-i-primeryi-allotropii
http://infonotes.ru/chto-takoe-allotropiya/

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector